Thinking Dynamically
A (liscrete-Rime) dynamical system is a function from a set X to itself

function space
(things that
things that plugged $1 n$)
Example: $x=$ all real numbers aka the number line aka \mathbb{R}
$f: \mathbb{R} \rightarrow \mathbb{R}$ is $f(x)=\frac{1}{2} x$
Orbits: the evolution of the system, for the point $x_{0}=6$ is

$$
\begin{aligned}
& x_{0}=6, x_{1}=f\left(x_{0}\right)=\frac{1}{2}(6)=3, x_{2}=f\left(x_{1}\right)=\frac{1}{2}(3)=\frac{3}{2} \\
& x_{4}=f\left(x_{3}\right)=\frac{1}{2}\left(\frac{3}{2}\right)=\frac{3}{4}
\end{aligned}
$$

These orbits are related to the geometric sequence
Notation: $f^{k}(x)=k^{\text {th }}$ - step in the orbitof x. warning: $f^{k}(x) \neq(f(x))^{k}$

- The (forward) orbit of a point x is the set $\theta(x)=\left\{x, f(x), f^{2}(x), \ldots\right\}$

Drawing iterates

Example: $X=a$ finite set $\{a, b, c\}$
$f: X \rightarrow X$ is defined by t he arrowsin the following grap

$$
\begin{aligned}
& f(a)=b \\
& f(b)=c \\
& f(c)=a
\end{aligned}
$$

Orbits
a, $f(a)=b, \quad f^{2}(a)=f(f(a))=f(b)=c, f^{3}(a)=a$
b, $f(b)=c, \quad f^{2}(c)=a, f^{3}(b)=b$
$c, f(c)=a \quad f^{2}(c)=b, f^{3}(c)=c$
in this case $f^{3}=$ id \longleftarrow identity transformation Definition A point p is called periodic if $f^{n}(p)=p$ for some positive integer n The smallest such integer is called the period.

Example for $f(x)=\frac{1}{2} x$ has only one periodic point, $x=0$.

Example

$$
\begin{aligned}
& x=\{a, b, c\} \\
& g: x \rightarrow x
\end{aligned}
$$

6 \& c are periodic with period 2. a is preperiodic:

$$
f^{2}(a)=f^{4}(a)
$$

Definition a point x is pre-periodic if there are two integers $m \neq n$ with

$$
f^{m}(x)=f^{n}(x)
$$

Example $x=$ unit circe $=\left\{(x, y) \in \mathbb{R}^{2} ; x^{2}+y^{2}=1\right\}$ Pick an angle θ measured in radians.

$f: X \rightarrow X$ is the counter-clockwise rotation of x at angle θ.
Also called circle rotation with angle θ.
if $\theta=\pi$, then

Example $x=T$ he space of finite subsets of rational numbers

$$
p \in X \text { then } p \text { carse } p=\left\{\frac{1}{3}, \frac{2}{5}, \frac{4}{7}\right\}
$$

f is defined by (for example):

$$
\begin{aligned}
f\left(\left\{\frac{1}{3}, \frac{2}{5}, \frac{4}{7}\right\}\right) & =\left\{\frac{1}{3}, \frac{1+2}{3+5}, \frac{2}{5}, \frac{2+4}{5+7}, \frac{4}{7}\right\} \\
& =\left\{\frac{1}{3}, \frac{3}{8}, \frac{2}{5}, \frac{1}{2}, \frac{4}{7}\right\}
\end{aligned}
$$

input: is a finite set in increasing order
output: the initial set and the medians of tue con secotive initial elements.

Some interesting thoughts:

- Start with any pair $\{a, b\}$. Do you eventually see all rational numbers between a and b ?
- what happens 20 the gaps between succesive elements?
- What is the damorinator size? How quickly do they grow?

